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The role of the linear elastic term in the spatial derivatives of the nematic director on the
director field is analysed. We consider a nematic sample in the shape of a slab, confined by
two surfaces treated to induce homeotropic alignment. It is shown that this term can be
responsible for spontaneous Fréedericksz transitions. The connection between the linear term
and the flexoelectric contribution, associated with a surface field, to the bulk energy density,
is discussed. The importance of dielectric anisotropy on the spontaneous Fréedericksz
transition is also investigated.

1. Introduction

The elastic theory for nematic liquid crystals was

proposed many years ago by Frank [1], Ericksen [2] and

Leslie [3]. In this theory, the nematic medium is

described by the director, n, which coincides with the

symmetry axis of a uniaxial crystal. The elastic energy

density is written as a quadratic form of the spatial

derivatives of n. Linear terms are omitted, because the

ground state is assumed to be undistorted [4]. The

elastic theory for nematic media has been modified to

describe the elastic behaviour of smectic liquid crystals

[5] or of lamellar systems, such as Langmuir–Blodgett

films [6]. Recently, modulated structures in media

having directional order have been investigated by

several groups. Selinger and Schnur proposed a

continuum theory for the self-assembly of cylindrical

tubules from chiral lipid bilayers in any tilted fluid

phase [7]. Selinger and Selinger developed an elastic

theory for chiral defects in Langmuir monolayers [8].

Periodic modulations of the director inside smectic

layers have been observed and theoretically described

by Gorecka et al. [9]. Modulated structures in Langmuir

monolayers and in smectic films are also described by

Ohyama et al. [10]. More recently, Tabe et al. [11]

carried out the first quantitative measurements of the

correlated modulation of molecular tilt and azimuthal

angles in two dimensions and in smectic C Langmuir

monolayers. The authors explain these results using an

extended Landau theory for tilted smectics. A similar

theoretical description has been used by Bogdanov and

Rößler [12] to describe the breaking of chiral symmetry

in magnetic nanostructures.

In all these theoretical analyses to describe the

appearance of modulated structures, linear terms in the

spatial derivatives of the director have been introduced.

Terms of this kind are well known in the continuum

description of magnetic materials, and are called

Lifchitz invariants [13]. Until now the influence of

these terms in one-dimensional problems has not been

described in detail. The aim of our paper is to analyse

the influence of the linear term in the spatial derivatives

of the director, allowed by the nematic symmetry, on

the stable nematic orientation.
This paper is organized as follows. Section 2 is

devoted to the general case in which the nematic liquid

crystal is characterized by a planar splay–bend defor-

mation. The general form, allowed by the symmetry of

the problem, for the linear term in the spatial nematic

director derivatives is obtained, and its origin discussed.

The connection between this term and the flexoelectric

term is also analysed. Section 3 is devoted to the

analysis of a nematic sample confined by two identical

substrates. In this situation the elastic constant relevant

to the linear elastic term is expected to be position-

dependent. The condition for which the initial home-

otopic orientation, induced by the surface treatment,

is no longer stable is deduced by means of different

degrees of approximation in §4, 5, 6. The influence of

the dielectric anisotropy on the stable orientation is
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discussed in §7. In §8 the possibility of a spontaneous

Fréedericksz transition induced by the thickness of the

sample is investigated.

2. General case

Let us consider the situation in which a splay–bend

distortion is present in the system. The elastic energy

density compatible with the symmetry requirements

(n equivalent to 2n) of the nematic phase is f~f2zf1,

where

f2~
1

2
K11 +:nð Þ2z 1

2
K33ðn|+|nÞ2 ð1Þ

is the usual Frank term, and

f1~l1 n:kð Þ +:nð Þzl3k: n|+|nð Þ ð2Þ
is a linear term in the spatial derivatives of the nematic

director.

In our analysis we consider a sample in the shape

of a slab of thickness d, with the z axis normal to the

confining walls. The director n is defined by the tilt

angle h(z)~cos21 (nek), where k is the normal to the

confining surfaces, at z~¡d/2. More precisely,

n~(sin h, 0, cos h). In this case f1 is

f1~
1

2
l sin 2hð Þh’ ð3Þ

where l~l32l1 and h’~dh/dz.

The contribution of f1 to f exists only if it is possible

to choose the direction of k, which represents the

symmetry breaking variable. It is similar to the term

describing the coupling between the flexoelectric polari-

zation, Pf, and an external d.c. field, E [4]. This term

is of the kind 2PfeE~2(e11n(en2e33n6(6n)eE.

If E~Ek, it coincides with the term described above

by putting l1~2e11E and l3~e33E. An electric field

associated with the presence of the limiting surfaces

may be due, for example, to selective ion adsorption, as

discussed elsewhere [14]. If the surfaces are assumed to

be identical, this electric field is position dependent,

E(z)~2E(2z), and the elastic constant of the linear

term, l, is a local property. It depends on the properties

of the liquid crystal, via the flexoelectric coefficients,

and on the properties of the substrate and of the liquid

crystal, via the electric field.

In our analysis we use the analogy with the

flexoelectric term [4]. However, an elastic term linear

in the spatial derivatives of the nematic director may

be associated with phenomena other than that of

ion-adsorption. For example, let us consider a nematic

liquid crystal formed by conical molecules. In the bulk,

the two orientations of a given molecule are equally

probable. In the proximity of a limiting surface, if the

two extremities of the molecule have different chemical

affinities with the substrate, a polar order exists. Even

in this case l depends on the liquid crystal and on the

surface. It is different from zero only in the surface

layers where the bulk symmetry is broken. The elastic

constant l will be indicated by eE(z), where e is a

property of the nematic liquid crystal, and E(z) a

property of the liquid crystal and of the substrate.

3. Basic equations of the problem
The linear term, according to equation (3), is

f1~(1/2)eE(z) sin (2h)h’, where E(z) is not constant

across the sample. In the limit of small deformations,

close to the homeotropic configuration, the total bulk

energy density, in the one-constant approximation

(K11~K33~K), reads

f ~
1

2
Kh’2zeE zð Þhh’: ð4Þ

In this case the bulk differential equilibrium equation is

h’’z
e

K
E’ zð Þh~0: ð5Þ

In our analysis the surfaces are assumed identical.

Consequently E(z)~2E(2z), and hence E’(z)~E’(2z).

In particular E {d=2ð Þ~{E d=2ð Þ~E. Furthermore,

we suppose that the surface treatments are such as to

induce homeotropic alignment on both surfaces, and

that the anisotropic part of the surface tension is

described by the Rapini–Papoular form [4]. Within this

framework, equation (5) has to be solved with the

boundary conditions

h0+
w{eE

K
h~0 ð6Þ

for z~2d/2 and z~d/2. The solution of equation (5)

with the boundary conditions (6) can be written in the

form

h zð Þ~aehe zð Þzaoho zð Þ ð7Þ
where ae and ao are two constants, and he(z)~he(2z),

and ho(z)~2ho(2z) are the even and odd solutions of

the differential equation (5) and of the boundary

condition

h’i{
w{eE

K
hi~0 ð8Þ

where i~o, e, at z~2d/2.
We note that the differential equation (5), with the

boundary conditions (6), always has the trivial solution

h(z)~0, for 2d/2ƒzƒd/2, which corresponds to the

homeotropic alignment. However, for particular values

of E, this problem also provides solutions differing

from the trivial one. The procedure used to obtain

the eigenvalue is the conventional one. If h E, zð Þ is a

solution of equation (5), with a well defined parity, the
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boundary conditions (6) give the relation

w

K
~

e

K
Ez

h’ E, zð Þ
h E, zð Þ

� �
z~{d=2

ð9Þ

which defines the critical values of the surface field E to

have the instability.

To analyse the stability of the deformed structure it is

necessary to evaluate the total energy, per unit surface,

of the sample for a defined h-profile, solution of

equation (5). For the problem under consideration, the

bulk energy density is given by equation (4). Since

h’2~
d

dz
hh’ð Þ{hh’’ ð10Þ

and by taking into account that h@~2(eE’/K)h, because

of the hypothesis that h is a solution of equation (5), we

obtain

h’2~
d

dz
hh’ð Þz eE’

K
h2: ð11Þ

It follows that the bulk energy density can be rewritten as

f ~
1

2
h’2z

eE

K
hh’~

1

2

d

dz
hh’z

eE

K
h2

� �
: ð12Þ

The total energy per unit surface is given by

F~

ðd=2

{d=2

f dzz
1

2
w1h2

1z
1

2
w2h2

2 ð13Þ

if the sample is a slab of thickness d. By substituting

equation (12) into (13) we get

F~
1

2
K h2h’2{h1h’1z

e

K
E2h2

2{E1h2
1

� �n o

z
1

2
w1h2

1z
1

2
w2h2

2 ð14Þ

where E2~E(d/2) and E1~E(2d/2), w1 and h1 refer to

the lower surface at z~2d/2, and w2 and h2 refer to the

upper surface, located at z~d/2. Since the surfaces are

assumed identical, w1~w2~w and E(z)~2E(2z), from

which we obtain E2~{E1~{E. In this case the

solutions of (5) are even or odd in z. If h(z) is even in z,

h(z)~h(2z), and h’(z)~2h’(2z). In particular h2~h1,

h’2~{h’1. In this case from equation (14) we obtain

F~ w{ eEzK
h’1
h1

� �� �
h2

1: ð15Þ

If h(z) is odd in z, h(z)~2h(2z), and h’(z)~h’(2z). In

particular h2~2h1, h’2~h’1. In this case from equa-

tion (14) we again obtain (15).

Equation (15) shows that the presence of the linear

term in h’ in the elastic energy density renormalizes the

anchoring energy strength. In fact, from (15) it is clear

that the total energy of the nematic sample reduces

to a surface contribution. Since the two surfaces are

assumed to be identical, each of them contributes to

the total energy with one half of (15). The effective

anchoring energy is then

weff~w{ eEzK
h’1
h1

� �
: ð16Þ

Expression (16) shows that the the renormalization

of the anchoring energy is not simply {eE. It also

contains a term connected with the elastic properties of

the nematic liquid crystal.
Expression (15) for F is useful for analysing the

stability of the deformed state. In fact, in a linear

analysis, h(z)~ahi(z), where hi(z) is a solution of the

differential equation (5) of a given symmetry, and a

an integration constant. Within this framework, F is

a quadratic function of a of the kind F~aa2, where,

according to (15)

a~ w{ eEzK
h’i1
hi1

� �� �
h’2i1: ð17Þ

From equation (17) one obtains the critical line (9). If E
is smaller than value defined by equation (9), aw0, and

F is minimized for a~0. This means that the stable

state is the non-deformed one. By contrast, if E is larger

than defined by (9), av0 and F has a maximum for

a~0. This means that the stable state is the deformed

one. From the point of view of phase transi-

tions, the critical curve w~w Eð Þ divides the (w, E)-

plane into two regions. The area below the curve
corresponds to deformed configurations, while above the

curve corresponds to the homeotropic configuration.

If the sample is halved the total energy per unit

surface is given by

F~

ð?
0

f dzz
1

2
w1h2

1: ð18Þ

In this case, by using equation (14) and taking into

account that limzp‘E(z)~0, and limzp‘h’~0, we

re-obtain for F expression (15).

In the following, we will consider differing approxi-

mations of the problem.

4. First approximation

Let us assume that the field E(z), due to the confining

surfaces, can be approximated by the function

E zð Þ~
{ E=bð Þ zzz�ð Þ

0

{ E=bð Þ z{z�ð Þ

8><
>: ð19Þ

for 2d/2ƒzƒ2z*, 2z*ƒzƒz*, and z*ƒzƒd/2, respec-

tively. In (19) z*~d/22b, and b is a typical length

associated with the penetration of the surface field into

the bulk. In this approximation E’ zð Þ~{ E=bð Þ in the

surface layers, and E’(z)~0 in the bulk.

First we assume that eE > 0. Within this framework
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the bulk differential equations of the problem are

h’’{m2h~0,

h’’~0,
ð20Þ

in the surface layers 2d/2ƒzƒ2z*, z*ƒzƒd/2, and in

the bulk 2z*ƒzƒz*, respectively. In equation (20) we put

m~
eE

Kb

� �1
2

: ð21Þ

We are looking for a function h which has to satisfy the

boundary conditions (6), and to be continuous with its

first derivative at z~¡z*.

The function he(z) for the present problem is

he zð Þ~
ae exp {mzð Þ 1z exp 2m zzz�ð Þ½ �f
2ae exp mz�ð Þ
ae exp mzð Þ 1z exp {2m z{z�ð Þ½ �f

8><
>: ð22Þ

for 2d/2ƒzƒ2z*, 2z*ƒzƒz*, and z*ƒzƒd/2, respec-

tively. The equation determining the eigenvalue of the

problem is governed by the condition (9), which yields

we

K
~

e

K
E{

eE

Kb

� �1
2

tanh
eE

K
b

� �1
2

: ð23Þ

Note that from equation (23) it follows that weveE.

Consequently the critical field to have the instability

is larger than the one to have the surface instability,

given by w~eE. In fact, if E(z) is assumed position-

independent, the effect of the linear term is just to

renormalize the surface anchoring energy, whereas in

the present case it also has a stabilizing effect on the

homeotropic orientation of the bulk.
The function ho(z) for the same problem is

ho zð Þ~

ao exp {mzð Þ 1{ 1{mz�

1zmz� exp 2m zzz�ð Þ½ �
n o

{mao exp mz�ð Þ 2z
1zmz�

{ao exp mzð Þ 1{ 1{mz�

1zmz� exp {2m z{z�ð Þ½ �
n o

8>>><
>>>:

ð24Þ

for 2d/2ƒzƒ2z*, 2z*ƒzƒz*, and z*ƒzƒd/2,

respectively. The equation determining the eigenvalue

of the problem is now

wo

K
~

e

K
E

{
eE

Kb

� �1
21z eEb=Kð Þ

1
2 d=2bð Þ{1½ � tanh eEb=Kð Þ

1
2

eEb=Kð Þ
1
2 d=2bð Þ{1½ �z tanh eEb=Kð Þ

1
2

: ð25Þ

Also in this case woveE, because the bulk contribu-

tion to the energy density is such as to stabilize the

homeotropic orientation.

To obtain a numerical estimation of the critical

anchoring energies we use the analogy between the

linear term and flexoelectric coupling, and assume

|e|y10211 C m21 [15,16], Ky10211 N [5], ey10e0 [5],

and by1027 m. The parameter b has been assumed to

be of the order of the Debye screening length for

commercial liquid crystals [17]. For the density of

surface adsorbed charges we use the value estimated

by Thurston et al. [17], sy1024 C m22. With the

values reported above, Eys/ey106 Vm21, and

eE*10{5 J m{2. Hence, the phenomenon described

by us is important whenever the extrapolation length

L~K/w is on the micron scale.

In figure 1 we show the critical curves we~we Eð Þ, and

wo~wo Eð Þ obtained using equations (23) and (25),

respectively. In the limit of large d they are practically

coincident, as expected. In fact in this limit the defor-

mation is localized in the surface layers of thickness b,

and the bulk is homeotropically oriented. However, it

is observed that EevEo. This implies that for a given

anchoring energy strength, the deformation character-

ized by a tilt angle which is an even function of z costs

less energy than the one odd in z.

By means of the linearized analysis presented above it

is not possible to obtain the full profile he(z). But simple

considerations show that the deformation is mainly

localized in the surface layers. In fact, since wveE,

it follows that h’e {d=2ð Þ~ w{eEð Þ=K½ �h {d=2ð Þv0.

Furthermore, from equation (20) we have h’’e zð Þ~
mhe(z)w0 for 2d/2ƒzƒd/2. Consequently, the tilt

angle is larger in the surface layers than in the bulk.

Figure 1. Critical lines we/(K/b) (solid) and wo/(K/b) (dashed)
for deformations even and odd in z obtained from the
simple analysis reported in §4. For large E the curves
are practically coincident. For a given anchoring energy
w the critical value of the surface field for the even
deformation in z is smaller than the one for the odd
deformation. Hence, the actual deformation induced by
the surface field is the even one. The curves are drawn for
the case eE > 0, using the parameters e~1610211 C m21,
K~10211 N, b~0.1mm and 0vEv107 V m{1.
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Let us consider now the case eEv0. Within this

framework the bulk differential equation is

h’’ zð Þz eEj j
Kb

h zð Þ~0: ð26Þ

The relevant boundary conditions are

h’+
wz eEj j

K
h~0 ð27Þ

for z~2d/2 and z~d/2, respectively. In this case the

presence of the surface field reinforces the anchoring

energy strength, because w is substituted by wz eEj j.
Furthermore, it destabilizes the bulk, as follows from

equation (26).

A calculation similar to the one reported above

shows that the eigenvalue for the even deformation is

we

K
~{

eEj j
K

z
eEj j
Kb

� �1
2

tan
eEj jb
K

� �1
2

ð28Þ

whereas the eigenvalue for the odd deformation is given

by

wo

K
~{

eEj j
K

z
eEj j
Kb

� �1
2 eEj jb=Kð Þ

1
2 d=2bð Þ{1½ � tan eEj jb=Kð Þ

1
2{1

eEj jb=Kð Þ
1
2 d=2bð Þ{1½ �z tan eEj jb=Kð Þ

1
2

:
ð29Þ

The critical curves we~we Eð Þ and wo~wo Eð Þ are

shown in figure 2. From this figure it follows that the

deformation even in z is favoured. It can take place

also in the case of strong anchoring, where wp‘. The

relevant critical field is found to be

E~
p

2

	 
2 K

ej jb : ð30Þ

Since in the case under consideration h’(2d/2)~

[(wz|eE|/K ]h(2d/2)w0, and h@(z)~2((|eE |/Kb))
1
2h(z)v0

for 2d/2ƒzƒd/2, the deformation is larger in the bulk
than in the surface layers.

5. Half-space approximation

The analysis presented in the previous section is

very simple, and allows us to obtain explicit expressions

for the surface fields inducing the instability due to

the presence of the linear elastic term in the spatial

derivative of the nematic director. However it is con-

nected with a very special z-dependence of the surface

field. It is possible to generalize the previous analysis if

d&b. In this case the sample can be considered, as for

as the surface field is concerned as being formed by two

halves. In each half the field can be assumed to decrease

exponentially with a typical length b. We limit our

investigation to the half z§0, and assume that the

surface field is

E zð Þ~E exp {z=bð Þ ð31Þ
By substituting equation (31) into (5) we have that the

bulk differential equation is now

h’’ zð Þ{ eE

Kb
exp {z=bð Þh zð Þ~0 ð32Þ

that has to be solved with the boundary condition

h’{
w{eE

K
h~0 ð33Þ

at z~0, and

lim
z??

h’ zð Þ~0: ð34Þ

Let us suppose first eE > 0. In this case the solution

of equation (32), which remains finite for z~0, and

whose first z derivative tends to zero for zp‘ is

h E, zð Þ~bI0 2
eEb

K

� �1
2

exp {z=2bð Þ
" #

ð35Þ

where I0 is the modified Bessel function of order zero,

and b is a constant. By means of equation (35) the

critical field is found to satisfy

w

K
~

eE

K
z

h’ E, zð Þ
h E, zð Þ

� �
z~0

: ð36Þ

In figure 3 we show the critical line obtained by means

of equation (36) and the one given by (23). As it is

evident from the figure, (23) is a good approximation

of (36), and the agreement increases with d. Also in the

Figure 2. As in figure 1 with eEv0. In this case the flexo-
electric contribution reinforces the anchoring energy,
changing w in wz eEj j, and destabilizes the homeotropic
orientation in the bulk. Now, even in the strong anchoring
situation, the bulk can be distorted by the surface field. As
in the previous case the even deformation is favoured.
Parameters as in figure 1, with e~21610211 C m21.
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case considered now, wveE. Consequently h’(0)v0.

Since h@(z)w0 for 0ƒzv‘, we deduce that h(0)wh(‘).
Let us suppose now that eEv0. In this case the

solution of the problem under consideration is

h zð Þ~bJ0 {2
eEj jb
K

� �1
2

exp {z=2bð Þ
" #

ð37Þ

where J0 is the Bessel function of order zero, and b is

a constant. By substituting equation (37) into (36) we

obtain the critical field for the instability. Note that

even in the case of strong anchoring the instability

exists and its critical field is given by

J0 {2
eEj jb
K

� �1
2

" #
~0 ð38Þ

from which we obtain

E�~
j0

2

� �2
K

ej jb ð39Þ

where j0~2.4048 is the first zero of the Bessel function

J0(x). In figure 4 we show the critical line obtained with

the present analysis with the one given by equation (28).

6. Finite sample confined by two identical surfaces

If d is comparable to b the half space approximation

no longer applies. In this case the field due to the

continuing surfaces, supposed to be identical, can be

approximated by

E zð Þ~{E
sinh z=bð Þ

sinh d=2bð Þ : ð40Þ

From equation (40) E {d=2ð Þ~{E d=2ð Þ~E, and the

surface field is localized in surface layers of thickness of

the order of b. If d&b from (40) we re-obtain the half-

space approximation discussed in the previous section.

By substituting equation (40) into (5) we obtain the

bulk differential equation for the present problem in the

form

h’’{
eE

Kb

cosh z=bð Þ
sinh d=2bð Þ h~0 ð41Þ

which has to be solved with the boundary conditions

(6). The even solution of equation (41) is

he zð Þ~aeYe E, zð Þ ð42Þ
and the odd solution of the same equation is

ho zð Þ~aoYo E, zð Þ ð43Þ
where Ye E, zð Þ and Yo E, zð Þ are the modified Mathieu’s

function, usually indicated by [18]

Ye E, zð Þ~C 0,{2
eEb

K sinh d=2bð Þ ,{i
z

2b

� �

Yo E, zð Þ~S 0,{2
eEb

K sinh d=2bð Þ ,{i
z

2b

� �
: ð44Þ

Repeating step by step the previous calculations, we

obtain that the critical surface field to induce an even or

odd deformation is given by

wi

K
~

eE

K
z

Y ’i E, zð Þ
Y i E, zð Þ

� �
z~{d=2

ð45Þ

where i~e, o.

If eE > 0 the behaviour of we and wo is that shown in

figure 5. As before, the actual deformation is he, because

Figure 3. Critical line w/(K/b) (solid) obtained by means
of the model reported in §5, where the surface field is
assumed to be exponentially decreasing with a typical
length b. Case eE > 0. The dashed line is the approxi-
mated curve we/(K/b) obtained in §4. Physical parameters
as in figure 1.

Figure 4. As in figure 3 with eEv0. The dashed line is
the approximated curve we/(K/b) obtained in §4. Physical
parameters as in figure 2.
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the relevant critical field is smaller than the one con-

nected to ho. In the opposite case, eEv0, the critical

lines are shown in figure 6. As already stressed, in this

case the instability is possible even in the case of strong

anchoring. The relevant threshold field is obtained by

the condition

Ye E,{d=2ð Þ~C 0,{2
eEb

K sinh d=2bð Þ , i
d

4b

� �
~0: ð46Þ

In figure 7 we show the ratio between the critical field

given by equation (46) and E� obtained by means of

(39) vs. the thickness of the sample. As expected, if

d&b, E?E�. The agreement is already very good for

dy10b.

7. Influence of the dielectric anisotropy on the

instability

Up to now we have described the effect of the linear

term in the spatial derivatives of the nematic director

on the stable orientation as the coupling of an intrinsic

electric field with the flexoelectric polarization, because

the contributions to the energy density are of the same

functional type. However, if the linear term is really

connected to the coupling of a surface electric field due

to the adsorption phenomenon, our analysis also has to

take into account the electric term connected with the

dielectric anisotropy [19, 20].

Let us consider a nematic sample confined by two

identical substrates, where the surface electric field

is such that E(z)~2E(2z). For this case we have

obtained different approximate solutions of the pro-

blem. As is evident from figures 5 and 6 the agreement

between the half-space approximation and the case

where d is of the same order of magnitude of b is

already very good for d~10b. Since by0.1 mm for

usual nematic samples used in experiments, our half-

space approximation works very well. In this approx-

imation we can investigate the influence of the dielectric

anisotropy ea~ejj{e\ (where || and H refer to the

directions parallel and perpendicular to the director n,

respectively) on the phenomenon under consideration.

If ea=0 the bulk energy density of the nematic liquid

crystal submitted to an electric field is, in the limit

Figure 5. Critical lines we/(K/b) (solid) and wo/(K/b) (dashed)
obtained from the analysis reported in §6. Physical
parameters as in figure 3.

Figure 6. Critical lines we/(K/b) (solid) and wo/(K/b) (dashed)
obtained from the analysis reported in §6. Physical
parameters as in Figure 4.

Figure 7. Reduced critical field E=E�, where E� is the critical
field in the half-space appoximation, as defined in
Equation (39), having a surface instability in a sample
of finite thickness d, vs. d. Physical parameters as in
figure 1.
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of hp0

f ~
1

2
Kh’2z

1

2
eaE2 zð Þh2zeE zð Þhh’: ð47Þ

The bulk equilibrium equation of the problem is, in the

exponential approximation for the electric field,

Kh’’{ eaE2 exp {2z=bð Þz eE

b
exp {z=bð Þ

� �
h~0 ð48Þ

which has to be solved with the boundary conditions

(33) and (34), where E is assumed to be positive. If

e~0, equation (48) becomes

Kh’’{eaE2 exp {2z=bð Þh~0 ð49Þ
whose solution is

h zð Þ~aI0 {
ea

K

	 
1
2

Eb exp {2z=bð Þ
� �

ð50Þ

where a is an integration constant. In this case the

surface instability exists only if eav0, and the

corresponding critical field is

E~
j0

b

K

eaj j

� �1
2

: ð51Þ

The term connected with the dielectric anisotropy,

and the one connected with the flexoelectric polariza-

tion for the values of the physical parameters used

above, are comparable for z~0, if eaye0. In this

situation, the dielectric anisotropy can play an impor-

tant role in the instability we are analysing.

The solution of equation (48), with the boundary

conditions (33) and (34) is

h~a exp {sign eð Þ ea

K

	 
1
2

Eb exp {z=bð Þ
� �

F E, zð Þ ð52Þ

where F E, zð Þ is the hypergeometric function [18]

F E,zð Þ~F1
1

2
1z

e2

Kea

� �1
2

" #
,1, 2sign eð Þ

(

|
ea

K

	 
1
2

Eb

�
exp {z=bð Þ

ð53Þ

The eigenvalues for the present problem are obtained

by substituting (52) into equation (36). In figure 8 we

show the critical curves relevant to the present case, for

different values of the dielectric anisotropy. For small

ea the influence of the dielectric term is negligible.

However, for eaye0, the dielectric contribution is such

that the homeotropic configuration is stable for all

surface fields, for reasonable values of the flexoelectric

coefficient. By contrast for eay2e0 the value of the

surface field giving rise to the instability is strongly

reduced due to the destabilizing effect of the dielectric

term.

As before, the critical field to have the instability

in the case of strong anchoring is obtained by the

condition

F E, 0ð Þ~F1
1

2
1z

e2

Kea

� �1
2

" #
, 1, 2sign eð Þ ea

K

	 
1
2

Eb

( )
~0: ð54Þ

In figure 9 we show the critical field for the instability

vs. the dielectric anisotropy, for e~¡1. As expected, if

ew0, which means that the flexoelectric term stabilizes the

homeotropic orientation in the bulk, the surface instability

is possible only for eav0. By contrast, if ev0, the

instability can occur even with positive dielectric aniso-

tropy. In this case, from equation (54), the maximum value

of the dielectric anisotropy to have the instability is eave2/

K.

8. Spontaneous Fréedericksz transition
In this paper we have discussed the possibility of

observing spontaneous Fréedericksz transition induced

by the surface field. This instability is, actually, a flexo-

electric instability induced by the electric field due to

the adsorption phenomenon. Our analysis was devoted

to the case in which the electric field is thickness

independent [21]. However the analysis can be easily

extended to take into account its thickness dependence

by means of the results reported in [14]. To a first

approximation, it is possible to assume, in the limit of

large adsorption energies, that the surface field involved

Figure 8. Critical line w/(K/b) obtained using the analysis
reported in §7. The dashed line is the critical curve
obtained in §5, where the dielectric anisotropy is
neglected. Physical parameters as in figure 3, with
ea=e0~:1 að Þ, 1 bð Þ, 5 cð Þ, {1 dð Þ, and 25(e).
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in the phenomenon is given by

E~
S

e
tanh

n0d

S

� �
: ð55Þ

In equation (55), S is the saturation surface density

of adsorbed charges, which depends on the adsorption

energies, and n0 is the bulk density of ions, in

equilibrium conditions (sample of infinite thickness,

without surface adsorption). Since E is an increasing

function of d, the phase diagrams (w, E) reported in

figures 1–7 are, actually, phase diagrams (w, d).

Chuvyrov et al. [22, 23] and Blinov and Sonin [24]

have observed that thick samples undergo spon-

taneous tilt transitions above a critical thickness

d~dc. This phenomenon was termed a spontaneous

Fréedericksz transition, and related to the existence

of surface electric polarization [25–27]. According to

the theory proposed in [26, 27], the uniform homeo-

tropic configuration becomes unstable because the

electrostatic contribution, connected with the surface

polarization, destabilizes the surface treatment impos-

ing the initial homeotropic orientation. It overcomes

the bare anchoring strength for dwdc. This view

has been discussed in detail in [28]. However, from

the discussion reported above, another possible mecha-

nism explaining the experimental data by [22–24]

could be connected to the existence of the elastic

constants associated with the linear term in the

elastic energy density. Of course, to observe the

predicted instability in this case it is necessary that

wv eEj j.

9. Conclusion

We have considered the influence of the elastic term,

linear in the spatial director derivatives, on the nematic

orientation. The analysis has been performed by

assuming that the nematic sample is of slab shape,

and the surfaces are treated in such a manner as to

induce homeotropic orientation. We have shown that

the linear term can induce, in particular cases, a spon-

taneous Fréedericksz transition, where the control

parameter is the thickness of the sample.
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